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The motion of a shock-wave through a region 
of non-uniform density 
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The method of characteristics is used to calculate numerical solutions for the 
one-dimensional motion of a plane shock-wave through a stationary gas which 
contains a region of non-uniform density. These solutions are compared with those 
given by the Chisnell-Whitham approach which ignores the effects on the shock- 
wave of the disturbances which are generated in the flow behind it, and also with 
the asymptotic solution given by the simple theory which regards the non- 
uniform region as a contact-surface discontinuity. It is concluded that the 
results of the simplified theories must be applied with caution. 

1. Introduction 
Consider the one-dimensional unsteady flow in which a plane shock-wave 

propagates into a stationary gas which contains a stratum from x = 0 to x = 1 
in which the density changes from a value po which is constant for x < 0 to another 
value p1 which remains constant for x > 1. Figure 1 is a representation of the 
resulting flow in the distance-time (2, t )  plane. 

The shock-wave is represented by the line OAB and, before it meets the region 
of non-uniform density, it  has a constant shock Mach number" Mso and the flow 
behind it is uniform. The shock strength changes in the non-uniform region 
between 0 and A and reflected waves are produced. As these reflected waves 
pass through the non-isentropic region OBC between the shock and the particle 
path through 0, further waves (which will be called re-reflected waves) are pro- 
duced which travel in the same direction as the shock and eventually overtake 
it. These re-reflected waves influence the rate of variation of shock strength 
between 0 and A and they also cause the shock to continue to alter in strength 
after it has passed through the non-uniform region at A .  To the left of OC, the 
reflected waves form a simple wave system-unless, of course, they are compres- 
sion waves, in which case another shock and further re-reflected waves are 
eventually formed. 

Chisnell (1955) obtained an expression for the change in strength of a shock- 
wave a t  an infinitesimal density discontinuity. He then integrated this expres- 
sion to obtain a relationship between shock strength and density. This approach, 
which had previously been applied by Moeckel(l952) to the corresponding inter- 
action in two-dimensional steady flow, ignores the influence of the re-reflected 

* The shock Mach number is defined as the ratio of the speed of the shock-wave to the 
speed of sound in the gas in front of it. 
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waves. Chisnell(l957) used a similar method to treat the interaction of a shock- 
wave with a non-uniformity in area, and the approach was further generalized 
by Whitham (1958) who applied it to a large number of non-uniform shock-wave 
propagation problems. The results of this approach will be referred to as Chisnell- 
Whitham solutions. 

When the density change is discontinuous, the non-uniform region reduces to 
a contact surface and the solution is easily obtained (Paterson 1948). As noted 
by Chisnell, this solution must give correctly the ultimate strength of the trans- 
mitted and reflected waves. The results of this approach will, therefore, be 
referred to as the asymptotic solution. 

FIGURE 1. Distance-time diagram for motion of shock-wave through region of 
non-uniform density. __ , Reflected waves ; -. -. , re-reflected waves. 

The Chisnell-Whitham approach gives a gradual change in shock Mach number 
or strength between 0 and A and then a constant value beyond A .  In  general, 
there is a considerable discrepancy between this value and that given by the 
asymptotic solution, and little is known about the rate at  which the asymptotic 
state is reached. However, the advent of high-speed electronic computers has 
made it possible to obtain complete numerical solutions by the method of 
characteristics on a sufficiently extensive scale to enable a realistic assessment 
to be made of the value of the Chisnell-Whitham approach. The object of this 
note is to present such an assessment for this particular shock-wave interaction 
problem. 

2. Description of method 
The appropriate characteristics relationships and boundary conditions 

(e.g. Rudinger 1955) were set sip in a form suitable for automatic computation 
and were programmed, using a simplified coding scheme, for the SILLIAC 
digital computer in the University of Sydney. The calculations were made for 
a perfect gas. 

The programme specified the (x) mesh length along the shock-wave. This was 
reduced where there was a, large gradient in shock strength and was made 



182 G. A .  Bird 

particularly small near the discontinuity in density gradient at A .  Table 1 shows 
a typical effect of mesh size on the accuracy of the calculation. The shock Mach 
number quoted is that at A (x = 1) for M,, = 4, with the density varying linearly 
from po = 1 to p 1  = 0.125 and a specific-heat ratio y = p. 

Sufficient accuracy was obtained here for an average mesh length at the shock 
of less than 0.05. The solution eventually oscillated about the result given by the 
asymptotic solution; for reasonably small mesh sizes the amplitude of these 
oscillations was of the order of one-tenth of 1 % of the asymptotic shock Mach 
number. A typical calculation involved a total of about 500 mesh points and 
required about 30min. computing time. The Chisnell-Whitham and the asymp- 
totic solutions were also programmed for automatic computation. 

Average mesh Shock Mach 

0.2 2.553 
0.1 2.506 
0.05 2.500 
0.025 2.499 

length at shock number at 2 = 1 

TABLE 1. Influence of mesh size. 

3. Results and discussion 
The accuracy of the Chisnell-Whitham approach was found to depend on the 

shock Mach number, the specific-heat ratio of the gas, the shape of the density 
profile and the magnitude of the density change. 

Figure 2 shows an example (for Mso = 1.1, po = 1, p1 = 0.125 and y = g) in 
which the Chisnell-Whitham solution provides an excellent description of the 
flow. The shock Mach number given by the characteristics solution is indis- 
tinguishable from that given by the Chisnell-Whitham solution up to the end 
of the non-uniform region and it then tends very slowly to the asymptotic solution 
-at x = 10 it  has changed by only one-tenth of the difference. On the other hand, 
figure 3 (for Mso = 4, po = 1, p1  = 32 and y = f )  is an example in which the 
Chisnell-Whitham solution gives little more than the initial slope of the curve 
of shock Mach number against distance. At x = 1, the characteristic's solution 
gives M, = 7.963 compared with M, = 9.985 by the Chisnell-Whitham method 
and M, = 7.582 by the asymptotic solution. If the pressure ratio across the shock 
were used as the measure of shock strength, the corresponding figures would be 
74.98, 116.2 and 68.07. The asymptotic shock Mach number is, in fact, effectively 
reached byx = 1.5, or in a distance beyond the end of the non-uniform layer which 
is much less than the thickness of the layer, This asymptotic shock strength is 
calculated on the assumption that the reflected waves do not form a shock-wave. 
However, as noted in the introduction, this is not always true but, even in this 
extreme example, the asymptotic shock strength would be altered by only 
1.5 yo to M, = 7.492. This adjustment would take place over a distance which is 
very large in comparison with the thickness of the non-uniform layer. 

Part of the contrast between the performances of the Chisnell-Whitham 
approach in these two examples can be attributed to the fact that in the first 
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the density decreases whilst in the second it increases. (Unless otherwise 
stated, the density variation with distance in all these examples is linear.) This 
effect is illustrated in figure 4 which is for HBo = 4, po = 1, p1 = 8 or 0.125, and 

Distance z 

FIGURE 2. Example of good performance by Chisnell-Whitham solution. y = g. 
--__ , Chisnell-Whitham; -, asymptotic; . . . . . , characteristics. 

= 32 
I 

1 1.5 
Distance 2 

FIGURE 3. Example of poor performance by Chisnell-Whitham solution. y = %. 
---_ , Chisnell-Whitham; ---, asymptotic; . . . . . , characteristics. 

y = g. For the positive density gradient, the shock Mach number at A (x = 1)  
has made up 73% of the difference between the Chisnell-Whitham solution and 
the asymptotic solution, and the latter is effectively reached at x = 1-75. How- 
ever, when the density decreases the corresponding figures are 19 % and x = 6.5. 
It is noticeable that for the increasing density the major part of the increase in 
shock strength occurs near x: = 0 so that the re-reflected waves have a consider- 
able influence on the shock before it reaches x: = 1. Opposite considerations apply 
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for the decreasing density and the re-reflected waves do not overtake the shock 
for a considerable distance. This suggested dependence on the shape of the 
density profile is confirmed in figure 5 which is for Mso = 4, po = 1, p1 = 8, y = 7 

1 2 3 

Distance x 
FIGURE 4. Influence of density gradient. y = g. 

_ _ _ _  , Chisnell-Whitham ; __ , asymptotic ; . . . . . , characteristics. 

J 

I 

Distance x: 

FIGURE 5. Influence of density profile. y = +. 
__-- , Chisnell-Whitham; ~ , asymptotic ; . . . . . , characteristics. 

and a density proportional to x* or x3. The performance of the Chisnell-Whitham 
solution is far better when the major changes occur near the end of the layer. 

Apart from this dependence on the density profile, the rate at which the 
asymptotic solution is approached for a given specific-heat ratio is largely a 
function of the shock Mach number. This is illustrated in figure 6 which shows 
M,/M, as a function of distance for po = 1, p1 = 8, y = and Mso = 1.1,2 and 16. 
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Note that, for the increasing density, the characteristics solution is well below 
the Chisnell-Whitham solution even for an initial shock Mach number as low 
as 1.1. 

Figure 7 (for M, = 4, po = 1, p1 = 8 and y = $ or ++) illustrates the effect of 
specific-heat ratio. For the lower value of specific-heat ratio, the asymptotic 
shock Mach number is approached far more quickly than for the higher value. 

Distance 2: 

FIGURE 6. Influence of initial shock Mach number. y = 8. 
-___ , Chisnell-Whitham; __ , asymptotic; . . . . . , characteristics. 

0 1 
Distance 2: 

. .  . ~ _--------- 
y =I 
‘...... . 

P 1 = 8  

2 

FIGURE 7. Influence of specific-heat ratio. 
-__- , Chisnell-Whitham; --, asymptotic; . . . . . , characteristics. 
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The magnitude of the over-all change in density does not have any profound 
effect on the comparisons between the solutions. A large over-all change merely 
serves to magnify the differences and vice versa. 

It is clear from these results that, given a combination of a weak shock-wave, 
a favourable density profle and a gas with a high ratio of specific heats, the 
Chisnell-Whitham approach can furnish an  excellent quantitative description 
of the flow. However, for strong shock-waves in gases with low ratios of specific 
heats, the results given by the simple contact surface discontinuity theory can 
be more meaningful. If a detailed solution is required in a general case, there 
does not seem to be any real substitute for a full numerical analysis. 
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